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Abstract. The plasma dispersion function is computed for a homogeneous 
isotropic plasma in which the particle velocities are distributed according 
to a Kappa distribution. An ordinary differential equation is derived for 
the plasma dispersion function and it is shown that the solution can be 
written in terms of Gauss' hypergeometric function in the form &(e) = 
i ~ - ~ / ~ ( ~ - l / 2 ) F ( l ,  2 ~ ,  ~ + l ,  t ) ,  where t = ( l + Z < / a / 2 .  Using the extensive 
theory of the hypergeometric function, various mathematical properties of the 
plasma dispersion function are derived including symmetry relations, series 
expansions, integral representations, and closed form expressions for integer 
and half-integer values of K. 

1 Introduction 
Particle distribution functions with power law tails are frequently ob- 

served in space plasmas throughout the solar system. In practice, they are 
often modeled using Kappa distributions (defined below). The existence of 
such nonthermal, non-Maxwellian distribution functions can have profound 
effects on wave propagation and transport processes in these plasmas; effects 
that are of significant interest in space physics. The kinetic theory of such 
processes depends in an essential way on the plasma dielectric function and, 
therefore, on the plasma dispersion function. 

The purpose of this paper is to derive the plasma dispersion function 
for the Kappa distribution in a new way and to investigate its mathemat- 
ical properties. This function was derived independently by Summers and 
Thornel and by Chateau and Meyer-Vernet2 for the special case where K. = 
1,2 ,3 , .  . . It was later derived in the more general case K. > 0 by Mace and 
Hellberg3 These authors all used the technique of contour integration. The 
approach taken here is Merent, being based instead on differential equations. 

In order to be as consistent as possible with the formulation of the classical 
plasma dispersion function, the definition given here is slightly different from 
that of Summers and Thornel and Mace and H e b ~ g . ~  To clarify the rea- 
sons for doing this, the definition of the plasma dispersion function is briefly 
derived from first principles. The resulting dispersion relation for plasma 
waves, equation (29), is somewhat simplified in the present formulation. 
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Section 2 gives a concise list of the main results of this paper. The 
definition of the Kappa distribution is given in Section 3, and the definition 
of the plasma dispersion function is given in Section 4. In Section 5, the 
differential equation for the plasma dispersion function is derived and the 
solution is expressed in terms of Gauss' hypergeometric function. Symmetry 
relations and series expansions are derived in Sections 6 and 7. Integral 
representations are derived in Sections 8 and 9. Closed form expressions 
for integer and half-integer values of K. are derived in Sections 9 and 10, 
respectively. 

2 Summary of Results 
The important properties of the plasma dispersion function are listed here 

for easy reference. These properties are investigated in detail in the sections 
that follow. Throughout this paper the power function zQ, a f R, is defined 
by its principal branch, that is, zQ = roexp(ia8), where z = rexp(i8), r 2 0, 
and -7r < 8 5 7r. 

Plasma Dispersion hnction 

If K. = n is an integer, this function has a single pole of order n at the point 

-200 along the negative imaginary axis. 
e = -. z f i .  Otherwise, it is analytic with a branch cut from < = - i f i  to 

Behavior Near 6 = -i& 

Symmetry Relations 
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Integral Representations 

where z = </,/E, 

dx, Im(z) > 0, (5) 
1 .- " 1  

(1 + x")" ( x  - 2) 

z # -i. 

Differential Equation 

(t2 + u)Z," + 2(. + 1)<2L + 2u2, = 0, 

Differentiation Formula 

Closed Form Expression for IC = n = 1,2,3.. . 

where z = </,/E. 

Closed Form Expression for IC = n + 
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where z = </fi and n = 1,2 ,3 , .  

Series Expansion for 1.1 < 1 

where z = </fi. 
Series Expansion for IzI > 1 

where z = </,/E, K # $, 4, g,. . ., and the function sgn[&(z)] is defined by 
equation (81). 

3 Kappa Distribution 
In the astrophysics and space physics literature, the isotropic Kappa d i s  

tribution in three dimensions is defined by 

where v = (v2, q,, v,) is the velocity vector, v = [VI, and vo is some charac- 
teristic velocity. The normalization constant is 

and is chosen such that 

47r LW fiE(v)v2 dv = 1. 
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The condition K. > 1/2 is necessary for this integral to converge. The Kappa 
distribution is closely related to the Beta distribution. In fact, the Beta func- 
tion arises when computing the normalization factor A, and the statistical 
moments. In the limit as K. 4 00, the Kappa distribution approaches the 
well known Maxwell distribution e-u2/u~.  

The velocity moments of the Kappa distribution are given by 

where n is an integer and 0 5 n 5 2(n - 1). For an arbitrary real power 
n 2 0, this integral is finite if and only if n < 2 ~ .  - 1. In applications, the 
equivalent temperature of an isotropic Kappa distribution is defined by the 
relation 

(18) 
1 3 
-m(v2> = -kBT 
2 2 

which implies 
1 

kBT= -mu: 2 
(K. :3/2) ' 

where kB is Boltzmann's constant. The second moment (v2) is finite if and 
only if 6 > 312. 

4 Plasma Dispersion Function 
In the Vlasov theory of plasma waves* the propagation of electrostatic 

waves (having E 11 k) in a homogeneous isotropic plasma is governed by the 
dispersion relation EL (k, s) = 0, where 

is the longitudinal dielectric function and SI units are used throughout. The 
index a denotes the different particle species, wP is the plasma frequency 
for species a, k is the Fourier wavevector with magnitude k = lkl, s is the 
Laplace transform variable, and I?& is related to the particle distribution 
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The distribution function fd(v) is normalized to unity. 

Spatial isotropy implies fo(v) = fo(v2), where v = [VI. After a rotation of 
coordinates which aligns the v, direction with k, the last equation becomes 

and, therefore, 

(24) ma0 - = -2wuf,o(u2). 
dU 

It is usually the case that has the functional form f&(v/vd) ,  where v d  
is some characteristic velocity; consequently, F d  = F,O(U/V&). Changing to 
normalized velocity variables: 

the dispersion relation (20) can be written 

1 - =zt(n,  W2 -) is = 0, 
0 k2v& Iklvao 

where, after dropping the primes on u, 

and, by definition, 

Z(a, e) = Jrn &!@ du, Im(c) > 0, 
-cQ u--J 

is the plasma dispersion function. It is defined for Im(c) 5 0 by analytic 
continuation. Introducing the complex frequency w = is which is consistent 
with Fourier modes of the form ei(k‘x--wt), the plasma dispersion relation takes 
the standard form5 
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If fd is a Maxwell distribution 

then the evaluation of (23) and (28) yields the well known plasma dispersion 
function6 1 w e-u2 

J.. - w u - <  
Z(<) = -/ -du, Im(<) > 0. 

If fd is a Kappa distribution (14), then the evaluation of (23) and (28) yields 

and 

This is the dispersion function for the isotropic Kappa distribution. It gen- 
eralizes the well known result (31) for the isotropic Maxwell distribution. 
It is different from the definition of Summers and Thornel which was also 
adopted by Mace and Hellberg.3 These authors employ an exponent K. + 1 
rather than K. in the integrand. Consequently, the function Zn(<) of Summers 
and Thorne is more closely related to the derivative ZL(<) of the function 
defined here. 

5 Representation by Gauss' Hypergeometric 
Function 

For purposes of mathematical manipulation, it is convenient to let z = 
./,/E in equation (33) and write 

where z = </,/E. Therefore, the calculation of the plasma dispersion function 
reduces to the evaluation of the integral 

dz, Im(z) > 0. (35) 
1 .- " 1  

-" (1 + z 2 ) K  (z - z )  
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It easy to see that this integral converges for all n > 0. There are two cases 
to consider: the case where K > 0 is an integer, and the case when n > 0 is 
not an integer. The solution in the first case was derived independently by 
Chateau and Meyer-Vernet2 and by Summers and Th0rne.l The solution in 
the second case was derived by Mace and Hellberg.3 As will now be shown, the 
solution for arbitrary K. > 0 is easily obtained by first finding the differential 
equation for I ( z ) .  This method of approach is an alternative to the method 
of contour integration used by the above authors. 

Differentiating equation (35) with respect to z yields 

dx. w 1  1 J -" (1 + x2)K (x - z)2 
I'(z) = 

Multiplying this by z and then using the identity 

I+-=-  z X 
5 - 2  x-z (37) 

it follows that 

(38) 
X dx. " 1  J -" (1 + 9 ) K  (x - z)2 

z P  + I = 

Differentiating this equation with respect to z ,  multiplying the result by z, 
and then using the identity (37) yields 

2x2 dx. " 1  J -" (1 + x2p (X - z ) ~  
z2In + 4zI' + 21 = (39) 

Now differentiate (36) and add the result to the last equation to obtain 

dx. (40) 
1 2 M L" (1 + x2)n-l (X - z ) ~  

(1 + z2)I" + 4zI' + 21 = 

Integrating the remaining integral by parts and comparing the result with 
equation (38), the right hand side of (40) equals 

(41) 
X dx = - 2 ( ~  - l)(zl' + I). 

" 1  J -m (1 + x2)K (z - z)2 
-2(K - 1) 

Thus, the differential equation for I ( z )  is 

(1 + z2)1" + 2(n + 1)ZI' + 2nI = 0. (42) 
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To obtain a unique solution, it is necessary to impose the initial conditions 

I ( z  = i) = Io, 

where IO is evaluated in Appendix A with the result 

Making the transformation 
1 + iz t = -  

2 
the differential equation (42) takes the form 

(43) 

(44) 

where 

I ( t  = 0) = Io, (48) 
2K 

K + 1  
I'(t = 0) = - 10. (49) 

Equation (47) is now in the standard form of the well known hypergeometric 
equation. 

Recall that the solution of the hypergeometric equation 

~ ( 1 -  t ) F N  + [C - (U + b + l)z]F'  - abF = 0 

with initial conditions 

F(0) = 1, 

F'(0) = - 
ab 
C 

is given by Gauss' hypergeometric function F(a,  b, c, z )  = s F ~ ( a ,  b, c, z ) .  This 
is a single valued analytic function of z in the complex plane with a branch 
cut from 1 to 00 along the positive real axis. For fixed z it is analytic in a, 
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b, and c separately with the exception of simple poles at c = 0, -1, -2,. . . In 
the unit disk it has the series representation 

ab z 
c l !  

a(a + l)b(b + 1) z2 
F ( u , ~ , c , z ) = ~ + - - +  c(c+ 1) -+... 2! 7 1.1 < 1, (53) 

which also shows that it is symmetric in a and b. The series terminates if a 
or b E (0, -1, -2,. . . }, in which case F(a, b, c, z )  is entire because it reduces 
to a polynomial in z. The properties of the function F have been thoroughly 
studied and documented. Therefore, for all intents and purposes it can be 
considered to be a closed form function in the same way that sin(z) and 
cos(z) are. 

Choosing 
u = 1, b =  2K, C =  K.+ 1, (54) 

equation (47) is equivalent to the hypergeometric equation (50); hence, the 
unique solution of (47) is given by 

Using (46), a closed form expression for the integral (35) is 

which is valid for all K. > 0, in f a d ,  for Re(&) > 0. Substituting this into 
(M), the plasma dispersion function is found to be 

1 Z(K - 2) 
zK(t) = K.3/2 F ( 1 , 2 ~ . ,  n + 1, t ) ,  

where 
1 + iz t = - = 1 (1 + 5). 

2 2 

(57) 

It is important to note that the function Zn(<) inherits all the properties of 
F(a, b, c, 2). Because F(a: b, c, z)  has a branch cut from 1 to 00, the function 
ZK([) is single valued analytic with a branch cut from = - i f i  to < = -io0 
along the negative imaginary axis. Here, the &plane is the complex frequency 
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plane, 5 = is/lklv0, and the lower half plane consists of all the damped modes. 

The behavior in the neighborhood of the singularity 5 = - 2 6  ca4 be 
obtained from the identity7 

F(a, b, c, 2) = (1 - Z)c-a-*F(C - a, c - b, c, 2). (59) 

This yields 

2 2 

Using the formula7 

it follows that 

r ( K  + i ) r ( K )  - d2r(K + 1) 

(62) 
Therefore, one obtains the asymptotic relation 

6 Symmetry Relations and Taylor Expansion 
Using the well established theory of the hypergeometric function, the 

properties of &(<) may be derived with little effort. From the series (53), it 
is obvious that for a, b, and c real, 

F(a,  b, c, z*) = [F(a, b, c, .)I*. 

Zn(-<*) = - [Zn(<)] *. 

(64) 

Therefore, replacing 5 with -<* in equations (57) and (58), it follows that 

(65) 
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This relates the values of &(<) in the left half-plane to those in the right 
half-plane. The classical dispersion function for the Maxwell distribution has 
the same property. 

From the identitp’ 

one has 

+ 2 n i ~ F ( l ,  K. + f ,  4, -z2).  (67) 

Substituting the closed form expression7 

F(u, b, b, Z )  = F(b, U, b, Z )  = (1 - z ) - ~ ,  (68) 

equation (67) takes the form 

Multiplying this equation by the leading coefficient in equation (57) yields 

where t = t/&. Changing 
the last equation yields the symmetry relation 

to -t (or z to -2) and adding the result to 

This relates the values of Zn(t) in the upper half-plane to those in the lower 
half-plane. In the limit as K + 00 one recovers the symmetry relation 

Z(<) + Z(-<) = 2iJ;;e-c2 (72) 



J. J.  Podesta-Plasma Dispersion Function for the Kappa Distribution 13 

for the Maxwellian dispersion function. 

yields the following series expansion valid for 1.1 < 1: 
Using the series expansion (53) for F(a, b, c, z ) ,  equation (70) immediately 

Here, the even powers are neatly summed into the first term. If necessary, the 
first term can be expanded using the binomial theorem. The series expansion 
can also be written in the more compact form 

however, the coefficients in (73) are much more explicit. 

7 Series Expansion for Large z 
Begin with the identity7 

F(u, b, C, z )  = r(c)r(b - a )  (-z)-"F (a ,  a - c + 1, u - b + 1, - 
r ( q r ( c  - a)  

r(c)r(a - b, ( -z ) -W b, b - c + 1, b - a 
r ( a ) r ( c  - b)  + 

Applying this to the last term in equation (69) yields 

F(1,2n, K + 1, F) = 

1 

r(6 + 1) (1 + 22)--n I in 
(. - f )  r ( n  + f )  6 

'(+ - n)Z(,2)-(n+1/2)F(n + f ,  n, K + f, --). (76) q i  - 6) 22 
+ ifin 
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In addition, using the identity (68), this simplifies to 

1,2n,n+ 1, *) = fir(&+ (1 + z2)-n 
r(6 + 1) 

2 

--n 

+- 

Using the reflection formula 
7r 

r ( z ) r ( i  - = - 
sin(7rz) ' 

(1 + z2)--n 

the last equation takes the form 

1,2n,n+ 1,*) = fir(,+ r ( R +  1) 
2 

in z-'F 1 1 3 - & , - -  +- ( ' 2 ' 2  (n - a> 

In order to get the phases right special care must be taken when combining 
the different power functions. This is because, for the principal branch of 
the power function, it is not always true that ( z " ) ~  = zaB or zrz; = ( ~ 1 2 2 ) ~ .  

However, using the identities 

and 
+1 if h ( z )  2 0 and arg(z) # -7r/2 
-1 if Re(z) 5 0 and arg(z) # +7r/2, 

z ( z ~ ) - ' / ~  = sgn[Re(z)] 

(81) 
which are valid for all z # 0, equation (79) ca,n be written 

+ fir(n+ ') { 1 + i tan(~n)sgn[Re(z)])(z2)-" (1 + f>" . (82) 
r(n + 3) 
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It should be noted that for half-integer values of n the right-hand side is 
undefined. Otherwise, this equation holds for all z # 0 in the complex plane 
with a branch cut from - 2  to -io0 along the negative imaginary axis. For 
IzI > 1, the hypergeometric function on the right-hand side of (82) can be 
expanded using the series (53) to obtain the expansion 

Izl > 1. The factor sgn[Re(z)] ensures that the right-hand side is continuous 
throughout the upper half plane. This expansion can be arrived at inde- 
pendently using the theory of Laplace transforms as shown in Appendix B. 
Substituting (83) into (57) yields 

- 1 1.3 ( - - $ ) 2 + . . . } ,  (84) -={ l + r  p : n  ( -- ; 2 ) +  (+)(+) 
JiEz 

which is valid for IzI > 1 and n # i, $: 4, .  . . It is important to note that this 
expansion is exact, not just asymptotic. 

8 Integration of the Differential Equation 
The differential equation (42) can be written in the symmetric form 

d { (1 + 2 2 )  1-6 - d [ (1+ z 2 ) K l ( z ) ] }  = 0. 
dz dz 

This has the fist integral 

d 
(1 + Z2)1-nz[(1 + 22)"I(z)]  = c,, 
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Equations (86) and (87) can be verified by substituting (35) into (86), car- 
rying out the differentiation, and then using integration by parts and the 
identity (37). Therefore, the solution can be written 

I ( z )  = C6(1 + z y  lz (1 + e)"-' d t ,  

where the lower limit of integration is chosen such that 

If K = 1/2, the integral (88) has the closed form solution 

~ ( z )  = -2(1+ z2)-1'2 - - , 

where 

sinh-l(z) = LZ (1 + t 2 ) * / 2  d t .  (91) 

Equivalently, this can be written 

sinh-l(z) = log ( z  + m) , (92) 

where log(z) is the principal branch of the logarithm. Substituting the result 
(88) into (N), the plasma dispersion function can be written 

(1 + 2)-y (1 + t 2 y  d t ,  2 6 -  1 zm = -7 (93) 

where z = E/&. This holds in both the upper and lower half planes and 
therefore represents the analytic continuation of 2,. 
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9 Solutions for Half-Integer Values: K = n+$ 

Setting K = n + in equation (69) yields 

+ (271 + l ) i z ~ ( 1 ,  n + I ,  $, -z2).  (94) 

By repeated application of the identity7 

( b - ~ ) ( l - ~ ) F ( a , b , c , ~ )  = ( ~ - ~ ) F ( ~ - l , b , c , z ) - ( c - b ) F ( ~ ,  b - l , ~ ,  2) (95) 

one may prove the formula 

1 r ( n + i - r n )  r ( n + f )  
2 m=l r ( n +  1) r ( n +  $ - rn) F(1,n  + 1, i, -z2)  = - (1 + 22)-m 

where n = 1,2,3, .  . . Inserting this formula into (94) and using the closed 
form expression7 

(97) 
1 

F(1,1, ;, -2) = -(1+ zz 2)-'/2sin-'(iz) 

one finds 

where K = n + f .  Thus, from (56) one obtains the closed form solutions 

I ( z )  = -2(1+ 22)--n--1/2 sinh-'(z) - - 

n 

z(1 + z2)-, (99) 
r (n  + 1 - rn) 
r ( n  + ; - rn) - 

m=l 
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n = 1,2,3, .  . . The first few solutions are as follows; for K. = 2: 

and for K = $: 

4 
- 5 ( 1 +  z2)-' - ? Z ( l +  z2)-2 - 2 4 1  + z2)-3. (102) 

15 

Multiplying equation (99) by the leading coefficient in equation (34), the 
plasma dispersion function is given by 

- -(1+ 2 [sinh-'(2) - "I>, (103) fi 2 

where z = </,/ii and n = 1,2,3, .  . . A more explicit form is obtained by 
making the substitution given by equation (92). Similar expressions were 
first obtained by Summers and Thorne'O using different methods. 

10 Solutions for Integer Values: K = n 
If K. = n is a positive integer, a closed form solution can be derived using 

the identity (61) to obtain a hypergeometric series which terminates; how- 
ever, this solution lacks mathematical symmetry. It is preferable to proceed 
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as follows. The hypergeometric series (53) can be written 

Splitting the sum into two parts 

the first part can be summed by the binomial theorem 

(108) 
r (m + Zm 

- = (1 - Z ) - y  a # 0, -1, -2,... , 
-0 2 qa) m! 

to obtain 

Substituting t = (1 + iz)/2 this yields 

Using the duplication formula (B6) found in Appendix B to evaluate the 
coefficient on the right hand side, one obtains 

(1 + z2)-n F(1,2n,n+ 1 , ~  r(n + 1) 
r(n + i) 
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Comparing this equation term by term with the symmetry relation [see equa- 
tion (69)l 

it follows that 

(113) 
or, equivalently, 

(114) 
Substituting this into equation (56) yields 

n-1 

(115) m 
m=O 

n = 1,2,3,. . . This same result is obtained by using the theory of residues 
to evaluate the integral (35) along a large semicircle in the lower half plane.2 
Because (115) is a rational function of z ,  it immediately gives the analytic 
continuation of I ( r )  throughout the complex plane. 

Using equation (110) to rewrite (113) in the form 

it follows from equation (57) that the plasma dispersion function is given by 

where z = and n = 1,2,3 . . . 
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11 Equivalent Integral Representations 
Consider the integral defined for Im(z) > 0 by 

dx 
1 .- 1 

-m (1 + x2)n (x - z )  
I ( z )  = 

and by analytic continuation for Im(z) 5 0. By meam of some elementary 
changes of variables, one may derive the following equivalent representations: 

1 L 
I ( z )  = dx, I-, (coshx)2n-1 [sinh2(x) - z2] 

Thus, by equation (55), all of these integrals are equal to 

In addition, I ( z )  can be represented as a Laplace transform. If z = is 
and %(s) > 0, then one has the identity 

Substituting this into (118) and changing the order of integration yields 

where 
O0 cos(zt) 

f ( t )  = q (1 + x2)n dx* 
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Using the well known integral representation of the modified Bessel function 
of the second kind: 

it follows that 

This establishes the identity 

I ( .  = is) = W [ f ( t ) ] ,  Re@) > 0, (131) 

where f(t) is defined by the previous equation and 9 is the Laplace transform 
operator. 

12 Conclusions 
Starting with the definition of the plasma dispersion function in terms 

of the integral (35)’ a second order differential equation is derived that im- 
mediately allows the dispersion function to be expressed in terms of Gauss’ 
hypergeometric function. Using the well known properties of the hypergeo- 
metric function, the many properties of the plasma dispersion function are 
then derived in a unified manner. A summary of the results is provided in 
Section 2. 

Appendix A: Evaluation of the Integral Io 
By definition 

dx. .- Io = I(. = 2) = J_, (1 (x 12) 
Multiplying the integrand by (x + i)/(x + i), this becomes 



J .  J .  Podesta-Plasma Dispersion Function for the Kappa Distribution 23 

and with the change of variable t = z2 one obtains 

00 t-112 
I o = i J  0 (1 + t)n+l dx. 

The remaining integral is the Beta function 

with p = 1/2 and q = FC + 1/2. Therefore, it follows that 

r(6 + 1/21 
o - ’ f i  r(K.+i) * 

I - -  

The calculation of I’(z = i) is similar. 

Appendix B: Alternative Derivation of the Ex- 
pansion for 1x1 > 1 

The purpose of this appendix is to give an independent derivation of the 
expansion (83) for 1.1 > 1 .  The starting point is the representation of that 
function as a Laplace transform. Using the definition 

together with the series expansion for the modified Bessel function I,,(z), one 
obtains 
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where x > 0 and v > 0 is not an integer. By a well known theorem,ll the 
Laplace transform of this function has the asymptotic expansion 

O0 r(2n+ 2 ~ +  1) 1 
- C qn + v + 1) n!22n+% S2n+2v+1 

n=O 

where s + 00 along any ray ei8 with 101 < ~ / 2 .  In fact, the following analysis 
shows that this series converges in the right half-plane whenever 1.1 > 1 and, 
therefore, equality holds throughout this region. However, this fact is not 
needed now. Setting v = K - 1/2, then from the relations (131) and (56) one 
obtains 

where s + 00 along any ray e"B with 101 < 7r/2. It will now be shown that 
this agrees with the expansion (83), that is: 

F 1 , 2 K , K + l , - -  1 - S )  - - ( 2 

The even and odd power terms are compared separately. First the even 
terms. Using the duplication formula 

r(22) = ~ - ~ ' ~ 2 ~ ~ - ~ r ( ~ ) r  + - ( 9 
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and the binomial theorem, the even terms in (B4) can be summed as follows 

This will now be compared with the even terms in (B5): 

It is easy to show that 

( - 2) -“ e+ixn if 0 < arg(s) < x/2 
s-2a e-i7rK if -r/2 < arg(s) 5 0, 

therefore, 
s-2K 

cos(nr) 
= [l + i tan(xn)sgn[Re(is)]] (-s2)-“, 

which establishes the equality of (B7) and (B8), that is, for the even power 
terms in (B4) and (B5). Similarly, using the duplication formula (B6) the 
odd terms in (B4) are easily shown to be equal to the odd terms in (B5). 
This gives an independent proof of (83) in the upper half plane which, by 
means of the symmetry relations, extends to the whole plane. 
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